DHT-Relation Work

Relation work of DHT

Edgeformers

EDGEFORMERS: G RAPH-E MPOWERED TRANSFORMERS FOR REPRESENTATION L EARNING ON T EXTUALE DGE NETWORKS

Background

  1. Edge-aware GNNs:

    studies assume the information carried by edges can be directly described as an attribute vector.

    1. This assumption holds well when edge features are categorical
    2. cannot fully capture contextualized text semantic
  2. PLM-GNN

    text information is first encoded by a PLM and then aggregated by a GNN

    1. such architectures process text and graph signals one after the other, and fail to simultaneously model the deep interactions
  3. GNN-nested PLM

    inject network information into the text encoding process

    1. cannot be easily adapted to handle text-rich edges

Proposed method

  1. we conduct edge representation learning by jointly considering text and network information via a Transformer-based architecture (Edgeformer-E).
  2. perform node representation learning using the edge representation learning module as building blocks (Edgeformer-N)
image-20230602122224210

Network-aware Edge Text Encoding with Virtual Node Tokens

Given an edge \(e_{ij}=(v_i,v_j)\)

Use a transformer to deal with text

introduce two virtual node tokens to represent $ v_i$ and \(v_j\) to transformer

$ v_i$ 和 \(v_j\) 是连接边两个node的embedding]

image-20230602122208124

TEXT-A WARE NODE REPRESENTATION LEARNING (EDGEFORMER-N)

node-Aggregating Edge Representations

image-20230602122457727

Enhancing Edge Representations with the Node’s Local Network Structure

add one more virtual node in edge learning :获取与边节点连接的邻居边的信息

image-20230602122540378

邻居边的embedding经过一个新tranformer,获取节点的embedding,作为参加edge learning的虚拟节点

GRATIS

Paper:GRATIS: Deep Learning Graph Representation with Task-specifific Topology and Multi-dimensional Edge Features

总结:计算一个全局representation-X,X经过MLP和reshape、softmax等操作变成和邻接矩阵大小相同的权重矩阵,然后得到一个edge出现的概率矩阵,概率大于一定阈值就补全边。

edge用向量表示而不是一个一维数(一维权重)。

Methology

image-20230617164254419
image-20230617164314513

Backbone

反正就是各种方法得到一个全局表示X

Graph Definition

采用图原来的点和边

image-20230617164457095

Task-specific Topology Prediction

用X计算出一个概率矩阵

image-20230617164752154

h(x)为mlp

如果概率大于某个阈值,增加新边

Multi-dimensional Edge Feature Generation

根据边两端的节点计算边

image-20230617165302836

VCR

image-20230617165318193

VVR

image-20230617165420670

fifinally employ either a pooling layer or a fully-connected layer, to flatten \(F_{i,x,j}\) and \(F_{ *j,x,i*}\)

image-20230617165554284

SURGE

Paper: Knowledge-Consistent Dialogue Generation with Knowledge Graphs

总结:在KG大图中检索与文本相关的子图,用GCN计算node representation,用ENGNN计算 edge representation。然后用在后面的任务